Compact hypersurfaces in a unit sphere with infinite fundamental group

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Hypersurfaces in a Unit Sphere with Infinite Fundamental Group

It is our purpose to study curvature structures of compact hypersurfaces in the unit sphere S(1). We proved that the Riemannian product S( √ 1 − c2) ×Sn−1(c) is the only compact hypersurfaces in S(1) with infinite fundamental group, which satisfy r ≥ n−2 n−1 and S ≤ (n − 1)n(r−1)+2 n−2 + n−2 n(r−1)+2 , where n(n − 1)r is the scalar curvature of hypersurfaces and c = n−2 nr . In particular, we o...

متن کامل

Linear Weingarten hypersurfaces in a unit sphere

In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].  

متن کامل

linear weingarten hypersurfaces in a unit sphere

in this paper, by modifying cheng-yau$'$s technique to complete hypersurfaces in $s^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [h. li, hypersurfaces with constant scalar curvature in space forms, {em math. ann.} {305} (1996), 665--672].

متن کامل

Clifford Hypersurfaces in a Unit Sphere

Let M be a compact Minimal hypersurface of the unit sphere S. In this paper we use a constant vector field on R to characterize the Clifford hypersurfaces S (√ l n ) × S mn ) , l + m = n, in S. We also study compact minimal Einstein hypersurfaces of dimension greater than two in the unit sphere and obtain a lower bound for first nonzero eigenvalue λ1 of its Laplacian operator.

متن کامل

Hypersurfaces with constant scalar or mean curvature in a unit sphere

Let M be an n(n ≥ 3)-dimensional complete connected hypersurface in a unit sphere S(1). In this paper, we show that (1) if M has non-zero mean curvature and constant scalar curvature n(n−1)r and two distinct principal curvatures, one of which is simple, then M is isometric to the Riemannian product S( √ 1− c2) × Sn−1(c), c = n−2 nr if r ≥ n−2 n−1 and S ≤ (n−1)n(r−1)+2 n−2 + n−2 n(r−1)+2 . (2) i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2003

ISSN: 0030-8730

DOI: 10.2140/pjm.2003.212.49